

Application Report
SBAA Draft November7, 2003

1

 MSC12xx Programming with SDCC
Charles Repetti

Charlie@Voter-Guide.com

Data Acquisition Product – Microsystem

ABSTRACT

The MSC12xx is a “system on a chip” which embeds an 8051
microcontroller, a 24 bit analog-to-digital converter (ADC), 4-32K
bytes of flash memory, and a set of peripherals in one package.
Programming the 8051 is an important part of a complete product
development effort. “SDCC” [1] is one of the options for 8051
software development. SDDC is available to anyone free of charge,
and is delivered with all of its source code. The entire tool flow runs
under Microsoft Windowstm.

Contents
INTRODUCTION..2
INSTALLATION ...2

CYGWIN...2
SDCC...4

SOURCE CODE PREPARATION ..5
C SOURCE CODE ..5
ASSEMBLY LANGUAGE ..7
LIBRARIES ..7

RUNNING THE “HELLO WORLD” PROGRAM ...8
MAKEFILE ..8
DOWNLOADING AND RUNNING ..8

EXERCISING THE ANALOG TO DIGITAL CONVERTER...9
USING FLOATING POINT IN SDCC ...9
USING THE ADC ..10
RUNNING THE PROGRAM..12

CONCLUSION...13
END NOTES...14

SBAA000

2 MSC12xx Programming with the GNU Tool Chain

Introduction
SDCC is a compelling choice for software development on the msc12xx for
at least two reasons. First, it is available free of charge. Perhaps more
importantly, it is delivered with all of the source code for the tools and the
libraries, as well as for numerous helpful examples. This means that if a
problem arises, the developer may fix it using the supplied source code.

We note the differences between the formats of the source and object code
TI supplies and the format our GNU-Linux expects, and provide an
automatic method for converting between them. Finally, we run an example
on an MSC12xxEVM.

Installation
Before beginning, it is a good idea to install and test the downloader TI
ships on the CD supplied with your MSC12xxEVM [2]. We will use the
downloader later to run our first program.

We first install “CYGWIN” [3], which runs as a guest under Microsoft
Windows. We install this as a binary, then install the GNU [4] compiler
(known as “GCC”), and then use it to build “SDCC”. SDCC is bundled with
“ASXXXX” and “ASLINK”, which are a freeware assembler and linker,
respectively. While SDCC binaries are available for Microsoft Windows, we
use a number of the other GNU tools in this application note, so we work
with CYGWIN.

Microsoft Windows is not shipped with any of the GNU tools installed, so a
bit of work is required to simply prepare CYGWIN. This is conveniently
accomplished with the advanced tools which are a part of the CYGWIN
package, but downloading them is time consuming. Of course CYGWIN is
not simply useful for developing on the MSC12xx, so the effort may have
additional benefits.

Beyond the base CYGWIN package, it is necessary to install the CYGWIN
developer’s kit to get the GCC compiler. Then SDCC must be obtained from
Sourceforge.

Finally, the TI downloader must be installed. This may obtained either from
the MSC12xxEVM CD or from the TI web site mentioned in the End Notes.

CYGWIN
The home page of CYGWIN, http://www.cygwin.com, is the place start. A
program named “setup.exe” must be copied to your computer. This allows
for CYGWIN components to be installed onto your computer. The “Base”
category may be installed first, and the “Devel” category added next. If
there are problems with timeouts over your network connection, it may be

SBAA000

MSC12xx Programming with the GNU Tool Chain 3

necessary to install the components piecemeal, or perhaps to download the
components before installing them.

Figure 1, CYGWIN Setup. Click on “Default” to change it to “Install”

Once the CYGWIN base is installed and the development components are
added, it should be possible to start a CYGWIN window on your computer.
This will be an MS-DOS box with a command shell running a “bash” shell.
Kernel calls map through to the CYGWIN DLL. Once the installation is
complete, run a quick check of your work, as follows:

SBAA000

4 MSC12xx Programming with the GNU Tool Chain

Figure 2, checking the CYGWIN/GCC installation

Note that we have not only checked the fact that the CYGWIN shell runs,
but we have also checked our GCC installation by starting the compiler as
“gcc –v”. We had no trouble installing “X-Window” and running it as well,
for those who want to use one of the GUI based IDE’s.

SDCC
Even if you receive a version of SDCC with your CYGWIN release, you will
still want to update SDCC. The version of SDCC we received with our
CYGWIN did not work at all! As of this writing, the SDCC group is doing
nightly builds, and we had no trouble with the latest stable release. Visit
http://sdcc.sourceforge.net/ and update your installation. Build SDCC from
the source, using your GCC compiler. The steps to do this are clearly
outlined in the SDCC documentation.

SBAA000

MSC12xx Programming with the GNU Tool Chain 5

Figure 3, checking the SDCC installation

Once done, check your work by exercising the compiler at the command
line. Again, note that versions of SDCC prior to 2.3.5 will probably not
work.

Source Code Preparation
SDCC accepts ANSI C, and includes a number of language extensions
specific to the 8051. While the syntax of SDCC is slightly different than the
one used by TI in its examples, it is a simple matter to automatically
translate from TI ”C” to SDCC ”C.”

C Source Code
In order to compile programs for the MSC12xxEVM, it is helpful to have
“msc12xx.h” available for complete register definitions. Unfortunately, some
TI files use slightly different language extensions for special register and
special bit definitions. Some of these cannot be remedied with “#define”
style macros. For example, a TI header file might read as:

 MSC12xx.h
/*--
MSC12xx.H
Header file for TI MSC12xx microcontroller.
All rights reserved.
--*/
sfr P0 = 0x80;
sbit TF1 = TCON^7;

This is not immediately useful for SDCC both because the syntax of the
“sfr” and “sbit” language extensions is ordered differently, and because the
SDCC preprocessor does not accept bit level operators for “sbit.” But since
we are using Linux, we have many easy ways to fix this. Rather than rewrite

SBAA000

6 MSC12xx Programming with the GNU Tool Chain

the compiler to accept TI’s syntax, which might take some effort, we simply
write a quick preprocessor to do the trick. We use Perl [5], because it is
quick and easy:

 sdcc_header.pl
#!/usr/bin/perl

Perl script to translate TI 8051 Headers for use with SDCC

Open the header and treat each line one at a time
open(FH, "msc12xx.h") || die "No File $!";
while(<FH>) {

 # if we find a “sfr” definition, save it for later
 if (/^sfr(16)?\s+(\S+)+\s+=\s+(\S+);/) {
 print "sfr at $3 $2;\n";
 $sfr{$1} = $2;

 # if we have an “sbit” as a “sfr” definition, use our record
 } elsif (/^sbit\s+(\S+)+\s+=\s([^\^]+)+.(\S+);/) {
 printf("sbit at 0x%X %s;\n", hex($sfr{$2})+hex($3), $1);

 # Any other lines are just echoed
 } else {
 print $_;
 }
}
close(FH)

This program is included, and as supplied simply dumps its output to the
screen. Invoking it as “parse.pl >ti.h”, though, would write a new file named
“ti.h” with the proper definitions. The above header might translate as
follows:

 ti.h
/*--
MSC12xx.H
Header file for TI MSC12xx microcontroller.
All rights reserved.
--*/
sfr at 0x80 P0;
sbit at 0x88 TF1;

We copy this file to the SDCC include directory. Now we write up a quick
“Hello World” program in “C”:

SBAA000

MSC12xx Programming with the GNU Tool Chain 7

 HelloWorld.c
//
// Copyright 2002 Texas Instruments
//
// MSC12xx Hello World Program
#include <8052.h>
#include <ser.h>
#include <stdio.h>

extern void autobaud(void);

// We define a “putchar” for “printf” to use
void putchar(char ch) {
 ser_putc(ch);
}
// Begin the program…
void main(void) {

 // Press <Enter> for auto baudrate adjust
 autobaud();

 // SDCC requires these setup calls
 ser_init();
 EA=1;

 // Print to the terminal
 printf("Hello World\r\n");
}

Note that the “autobaud” that we use is from the SDCC library, and not the
TI supplied ROM. No matter, it functions the same way, timing the signal
wavelength on the input channel and setting the baud rate on the 8051
appropriately. Also note that we used the SDCC serial library, being careful
to enable interrupts with “EA=1” before trying to write to the port.

We also make use of the standard “C” library, as implemented by SDCC.
By defining a “putchar” which simply writes to our terminal, we may now use
the library function “printf” (which resolves, after formatting, to our “putchar”)
to write a message to the host screen.

Assembly Language
SDCC’s output is a well commented assembly language listing. This can be
used for reference. Also, the ASXXX assembler can accept hand written
code. The command “asx8051 –los myfile.asm” will assemble “myfile.asm”
to “myfile.rel”. The output file may be linked along with any output of SDCC
to form a program downloadable to the MSC12xxEVM.

Libraries
The entire source listing for the SDCC libraries is included with the
distribution. The area of library transparency and adaptability is one where
the “open source” movement really shows its advantages. Naturally, tools
for creating one’s own libraries are also included.

SBAA000

8 MSC12xx Programming with the GNU Tool Chain

It is considered good form to contribute any useful code you might produce
back to the SDCC project.

Running the “Hello World” Program
All that remains is to run the program. As we mentioned, it is necessary to
install the TI downloader. Instructions for doing this are included on the CD
which was shipped with your MSC12xxEVM. It is a good idea to test the
installation with a TI supplied example before approaching SDCC.

Makefile
There is one last foible of our tool chain we must address. A CYGWIN file
uses a different “end of line” sequence than does a Microsoft Windowstm

file. This is such a common nuisance that a utility to remedy the issue is
included with CYGWIN. It is the “unix2dos” command that is included in the
“make file”. “Make” is a utility that has been around for years, and is a
favored method for automating a tool chain’s flow:

 Makefile
all: HelloWorld.ihx

HelloWorld.ihx: HelloWorld.rel
 sdcc HelloWorld.rel
 unix2dos HelloWorld.ihx
 download /FHelloWorld.ihx /X11 /P1 /T /B19200

HelloWorld.rel: HelloWorld.c
 sdcc -c HelloWorld.c

clean:
 rm *.rel

Downloading and Running
Typing “make” automatically looks for a file in the current directory named
“Makefile”, as shown above, and follows the rules it contains. This should
result in the building and running of the “HelloWord” program we have been
discussing in this application note.

SBAA000

MSC12xx Programming with the GNU Tool Chain 9

Figure 4, Running the Program

The figure above shows the screen after the TI downloader has run, and
you have pressed “enter” in your keyboard. The “HelloWorld” shows its
output in the terminal screen, demonstrating our success!

Exercising the Analog to Digital Converter
The Analog to Digital Converter (the “ADC”) is the heart of the msc12xx .
Before we set up and use the ADC, though, we will want to be sure we can
print the results. Because we want to easily be able to analyze our results
without overflow or underflow problems [6], we need to do a little work first.

Using Floating Point in SDCC
SDCC includes floating point support by default. However, SDCC currently
ships with the floating point support for the “printf” library function turned off.
This is easy to fix. We go back to the place where we first downloaded and
built SDCC and make a small change to the “vprintf” function. This function
should be in “/usr/share/sdcc/device/lib/vprintf.c”.

SBAA000

10 MSC12xx Programming with the GNU Tool Chain

 vprintf.c
/*---
 vprintf.c - formatted output conversion
 Written By - Martijn van Balen aed@iae.nl (1999)
 Added %f By - johan.knol@iduna.nl (2000)

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

In other words, you are welcome to use, share and improve this program.
You are forbidden to forbid anyone else to use, share and improve
what you give them. Help stamp out software-hoarding!
---*/

/* this module uses some global variables instead function parameters, so: */

#ifdef SDCC_STACK_AUTO
#warning "this module cannot yet be use as a reentrant one"
#endif

// We comment out the switch, so “USE_FLOATS” is unconditionally true
// #if defined(__ds390)
#define USE_FLOATS 1
// #endif

Note at the end of the file where we have set “USE_FLOATS” to true. This
applies only to the “printf” function; floating point match is enabled by
default in SDCC. We then rebuild and reinstall SDCC as we did when we
first installed it.

Using the ADC
Now we can write a “C” program which will read the ADC and output the
results to the terminal:

 adc.c
#include <ti.h>
#include <stdio.h>
#include <ser.h>

// We will use these to scale our ADC’s
#define VREF 2.5
#define GND 0.0
#define FULL_SCALE 16777215.0

// function declarations
extern void autobaud (void);
extern unsigned long unipolar (void);
extern void calibrate (void);

adc.c (continued)

SBAA000

MSC12xx Programming with the GNU Tool Chain 11

// global variables for convenience
// note: SDCC places automatics on the heap,
// unless keyword "reentrant" is used
int i, n = 0, decimation = 1920, samples = 10;
unsigned long adc, adc_buffer;
float volts;

// Our entry point
void main (void) {

 // Set up the terminal
 autobaud();
 ser_init();
 EA=1;

 // Prepare for ADC use
 calibrate();

 // Go in circles...
 while (1) {

 // Take a few samples for noise free operation
 adc = 0;
 for (i = 0 ; i < samples ; i++) {

 // wait for the next result
 while (!(AIE&0x20));

 // accumulate the results quickly, without overflow,
 // but with a bias against older samples.
 adc_buffer = unipolar() >> 1;
 adc = (adc >> 1) + adc_buffer;
 }

 // calculate the exact voltage we are seeing...
 volts = ((float) adc / FULL_SCALE) * (VREF - GND);

 // ...and print out the results
 printf("Sample %3d: V=%f \r", ++n, volts);
 }
}

//
// Set up the ADC and throw away a few a samples as the device settles
//
void calibrate (void) {

 printf ("Unipolar mode (AIN0)\r\n");

 // Timer Setup
 USEC = 10; // 11 MHz Clock
 ACLK = 8; // ACLK = 11,059,000 / 9 = 1.2288MHz
 // modclock = 1.2288MHz / 64 = 19,200 Hz
 // Setup ADC
 PDCON &= 0xF7; // turn on ADC
 ADMUX = 0x08; // Select Analog Channel 1

 // VRefOn, VRef Hi, Burnout Detect Off, PGA = 1
 ADCON0 = 0x30;

 // unipolar auto, self calibration, offset, gain
 ADCON1 = 0x41;

SBAA000

12 MSC12xx Programming with the GNU Tool Chain

 // Note that if decimation is too low, noise will appear...
 ADCON2 = decimation & 0xFF; // LSB of decimation
 ADCON3 = (decimation>>8) & 0x07; // MSB of decimation

 printf ("Calibrating. . .\r\n");

 for (i = 0; i<4; i++) {

 // Wait for four conversions for filter to settle after calibration
 while (!(AIE & 0x20));

 // dummy read to clear ADCIRQ
 unipolar();
 }
}

//
// This is for unsigned 24 bit results
//
unsigned long unipolar (void)
 {

 // Storage for in-place conversion
 union {
 char BitMap[4];
 long LongInteger; } DoubleWord ;

 // Move the register contents piecemeal to “little endian” “long” storage
 DoubleWord.BitMap[3] = 0x00;
 DoubleWord.BitMap[2] = ADRESH;
 DoubleWord.BitMap[1] = ADRESM;
 DoubleWord.BitMap[0] = ADRESL;

 // return the result as a "long"
 return DoubleWord.LongInteger;
 }

//
// As in “HelloWorld”, we need this for “printf”
//
void putchar(char ch) {
 ser_putc(ch);
}

Running the Program
With the MSC12xxEVM powered up, ground AGND, and place a voltage
source across ANC and AIN0 of less than 2.5 Volts. Now, using a
“Makefile” like the one we used for “Hello World”, we build and run “ADC.”
The result should be a screen like the one we saw for “HelloWorld”, but with
a precise read on the voltage we place on the input pin of our msc12xxEVM
showing on the terminal screen.

SBAA000

MSC12xx Programming with the GNU Tool Chain 13

Figure 5, Running "adc.c"

Conclusion
SDCC is a viable option for software development on the TI MSC12xx
family of Microsystems. The software is available free of charge, and is
“open source.” Extending the Libraries is always an option, and the
Developer has the added security of knowing that software tool reliability is
under his or her control.

SBAA000

14 MSC12xx Programming with the GNU Tool Chain

End Notes

[1] SDCC is currently maintained by the Source Forge at http://sdcc.sourceforge.net/.

[2] http://www-s.ti.com/sc/psheets/sbac018a/sbac018a.zip is a location for obtaining the TI
downloader.

[3] The home page for Cygwin is http://www.cygwin.com.

[4] Important information is available at http://www.gnu.org. Note that SDCC and CYGWIN
are also released under the GPL.

[5] Perl is a widely used for text processing, particularly for Internet applications. It is
included in the CYGWIN distribution. More information is available at http://www.perl.com,
as well as on many other Internet sites.

[6] Many thanks to Russell Anderson at TI for suggesting this topic.

